Efficient and Rapid Template-Directed Nucleic Acid Copying Using 2′-Amino-2′,3′-dideoxyribonucleoside−5′-Phosphorimidazolide Monomers
نویسندگان
چکیده
The development of a sequence-general nucleic acid copying system is an essential step in the assembly of a synthetic protocell, an autonomously replicating spatially localized chemical system capable of spontaneous Darwinian evolution. Previously described nonenzymatic template-copying experiments have validated the concept of nonenzymatic replication, but have not yet achieved robust, sequence-general polynucleotide replication. The 5'-phosphorimidazolides of the 2'-amino-2',3'-dideoxyribonucleotides are attractive as potential monomers for such a system because they polymerize by forming 2'-->5' linkages, which are favored in nonenzymatic polymerization reactions using similarly activated ribonucleotides on RNA templates. Furthermore, the 5'-activated 2'-amino nucleotides do not cyclize. We recently described the rapid and efficient nonenzymatic copying of a DNA homopolymer template (dC(15)) encapsulated within fatty acid vesicles using 2'-amino-2',3'-dideoxyguanosine-5'-phosphorimidazolide as the activated monomer. However, to realize a true Darwinian system, the template-copying chemistry must be able to copy most sequences and their complements to allow for the transmission of information from generation to generation. Here, we describe the copying of a series of nucleic acid templates using 2'-amino-2',3'-dideoxynucleotide-5'-phosphorimidazolides. Polymerization reactions proceed rapidly to completion on short homopolymer RNA and LNA templates, which favor an A-type duplex geometry. We show that more efficiently copied sequences are generated by replacing the adenine nucleobase with diaminopurine, and uracil with C5-(1-propynyl)uracil. Finally, we explore the copying of longer, mixed-sequence RNA templates to assess the sequence-general copying ability of 2'-amino-2',3'-dideoxynucleoside-5'-phosphorimidazolides. Our results are a significant step forward in the realization of a self-replicating genetic polymer compatible with protocell template copying and suggest that N2'-->P5'-phosphoramidate DNA may have the potential to function as a self-replicating system.
منابع مشابه
Synthesis of activated 3'-amino-3'-deoxy-2-thio-thymidine, a superior substrate for the nonenzymatic copying of nucleic acid templates.
We present a scalable synthesis of 3'-amino-3'-deoxy-2-thio-thymidine-5'-phosphoro-2-methylimidazolide, an activated monomer that can copy adenosine residues in nucleic acid templates rapidly without a polymerase. The sulfur atom substitution enhances the rate of template copying by 5-fold compared with the 3'-amino-3'-deoxy-T monomer, while the 3'-amino monomers exhibit a 2- to 30-fold enhance...
متن کاملSynthesis and Nonenzymatic Template-Directed Polymerization of 2′-Amino-2′-deoxythreose Nucleotides
Threose nucleic acid (TNA) is a potential alternative genetic material that may have played a role in the early evolution of life. We have developed a novel synthesis of 2'-amino modified TNA nucleosides (2'-NH2-TNA) based on a cycloaddition reaction between a glycal and an azodicarboxylate, followed by direct nucleosidation of the cycloadduct. Using this route, we synthesized the thymine and g...
متن کاملSliding over the Blocks in Enzyme-Free RNA Copying – One-Pot Primer Extension in Ice
Template-directed polymerization of RNA in the absence of enzymes is the basis for an information transfer in the 'RNA-world' hypothesis and in novel nucleic acid based technology. Previous investigations established that only cytidine rich strands are efficient templates in bulk aqueous solutions while a few specific sequences completely block the extension of hybridized primers. We show that ...
متن کاملFast and accurate nonenzymatic copying of an RNA-like synthetic genetic polymer.
Recent advances suggest that it may be possible to construct simple artificial cells from two subsystems: a self-replicating cell membrane and a self-replicating genetic polymer. Although multiple pathways for the growth and division of model protocell membranes have been characterized, no self-replicating genetic material is yet available. Nonenzymatic template-directed synthesis of RNA with a...
متن کاملEnzymatic synthesis of DNA employing pyrophosphate-linked dinucleotide substrates
Background: One of the remaining questions in the understanding of the origin of Nature’s information system is the way the first nucleic acids have been synthesized. This could have been realized using nucleoside triphosphates or imidazolides of nucleoside monophosphates as building blocks. Alternatively, dinucleoside pyrophosphates could have been used for this purpose. The advantage of using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 131 شماره
صفحات -
تاریخ انتشار 2009